В настоящее время все более высокие требования предъявляются к качеству и бесперебойности передачи электроэнергии, которые в свою очередь зависят от надежности и качества электроэнергетического оборудования.

ретом-30ка

Основным коммутационным аппаратом в электрических установках, обеспечивающим выполнение операций включения и отключения отдельных цепей при ручном или автоматическом управлении, является выключатель. От его исправности зависит правильная и безопасная работа электроустановок, поэтому важно не только содержать выключатель в исправном состоянии, но и проводить его своевременную проверку.

Наиболее распространенным типом расцепителей в автоматических выключателях до недавнего времени был электромагнитный расцепитель, реагировавший на заданное среднеквадратическое значение тока (т.е. на площадь сигнала). Для проверки таких выключателей удобно было использовать прогрузочные устройства с тиристорными преобразователями. Принцип их работы носит название фазо-импульсного регулирования и заключается в создании искусственного КЗ с изначально неизвестной амплитудой тока, а затем в прекращении подачи тока в необходимые фазы для обеспечения заданной точности и площади сигнала. В результате автоматический выключатель прогружается током, форма которого представляет части синусоиды. На рис. 1 показаны две разных формы тока, которые дают одинаковое среднедействующее значение при измерении уровня сигнала. Поскольку для проверки выключателей с электромагнитными расцепителями важна не форма, а площадь сигнала, прогрузочные устройства с тиристорными преобразователями вполне справлялись с этой задачей.

фазо-импульсного регулирование
Рис. 1. Синусоидальный сигнал и сигнал, полученный методом фазо-импульсного регулирования

В настоящее время широкое распространение получили выключатели с электронными и микропроцессорными расцепителями, анализирующими форму и скорость изменения тока. Осуществлять прогрузку таких выключателей тиристорными устройствами недопустимо. Результаты проверки будут неверными, поскольку сигналы с одинаковым скреднеквадратичным значением тока могут иметь разные формы и скорости изменения тока. Таким образом, при разработке современных испытательных установок необходимо учитывать особенности проверок современных автоматов.

Основными параметрами выключателя являются ток срабатывания, время срабатывания и время-токовая характеристика перегрузки.

Большинство современных низковольтных выключателей оборудованы быстродействующими и высокоточными электронными измерителями, воздействующими на контактную систему. Они не требует отдельного питания и гарантируют правильную работу защиты при токе нагрузки не менее 15% от номинального, даже при наличии тока только в одной фазе. Отдельно проверять данные измерители не представляется возможным, поскольку они располагаются внутри самого автомата, но в этом и нет необходимости, поскольку корректное срабатывание автоматического выключателя при подаче первичного тока будет свидетельствовать о работоспособности его контактной системы и измерительного блока.

При прогрузке выключателя первичным током сразу же встает вопрос, каким образом подавать ток: увеличивать его плавно или же подавать заданное значение тока скачком?

Очевидно, что испытательный ток необходимо подавать скачком (рис. 2, а), поскольку этот режим наиболее точно имитирует аварийную ситуацию, при которой ток в сети возрастает скачкообразно. При плавном увеличении тока (рис. 2, б), например, с использованием ЛАТРа, происходит интенсивный нагрев контактной системы, что может негативно сказаться на результатах проверки.

Методы поиска тока срабатывания
Рис. 2. Методы поиска тока срабатывания: а) увеличение тока скачком, б) плавное увеличение тока

В некоторых выключателях с электронными расцепителями питание схемы осуществляется непосредственно от тока, проходящего через полюса автоматического выключателя. В таких выключателях, чтобы запитать схему расцепителя, необходимо предварительно подать ток, близкий по значению к номинальному току выключателя, а затем уже подавать испытательный ток. Если проводить проверку без предварительной подачи тока, измеренное время срабатывания выключателя будет несколько завышенным (на величину времени запуска схемы расцепителя).

ретом-30ка

Следующий вопрос, требующий особого внимания: как получить наиболее точные результаты при измерении тока и времени срабатывания выключателя?

Электронные расцепители реагируют на действующее значение тока, это обусловлено тем, что на практике во время аварийных режимов в сети не всегда протекают синусоидальные токи, поэтому наиболее целесообразно оценивать величину тока по той работе, которую он совершает. Следовательно, испытательная установка также должна фиксировать и отображать действующее значение тока.

Опыт проверки быстродействующих выключателей, время срабатывания которых меньше 20 мс, показывает, что на интервале времени до одного периода расчетное значение действующего тока имеет достаточно большие расхождения со значением, рассчитанным для синусоиды с большим количеством периодов (рис. 3).

Действующее значение тока
Рис. 3. Действующее значение тока и отклонение в первый период выдачи тока

Возникает вопрос: какую величину тока отображать, измеренную в момент отключения выключателя или же расчетную величину тока, который бы протекал, если бы автомат не отключился (фактически это величина уставки)? Наиболее удобным для пользователей было бы отображение обоих величин токов, однако расчет второго значения достаточно трудоемок, поскольку необходимо учитывать время протекания сигнала, скорость изменения тока и другие дополнительные параметры. В настоящее время испытательные установки фиксируют ток, измеренный в момент отключения выключателя. Измерение времени срабатывания выключателей можно проводить двумя способами: по пропаданию тока в цепи (по отсечке) и по изменению состояния контакта, подключенного к дискретному входу испытательной установки.

Измерение времени срабатывания по пропаданию тока рекомендуется применять при проверке тепловых расцепителей, у которых данное время превышает 5 с. Фиксация тока и времени срабатывания происходит по достижению тока определенного уровня Iпорог, определяемого перед каждой проверкой. Iпорог составляет 10% от предела измерения. Однако ток, в силу переходных процессов, не может мгновенно стать равным нулю (рис. 4), поэтому значение измеренного времени срабатывания по сравнению с реальным получается завышенным.

Изменение тока при срабатывании выключателя
Рис. 4. Изменение тока при срабатывании выключателя

При проверке быстродействующих выключателей с мгновенными расцепителями время срабатывания рекомендуется определять по изменению состояния контакта. В этом случае может присутствовать разновременность срабатывания контактов испытательной установки и выключателя, однако погрешность измеренного времени срабатывания незначительна.

Всё вышеописанные особенности проверок выключателей были учтены при разработке испытательного комплекса РЕТОМ-30кА, предназначенного для проверки первичным током устройств РЗА, автоматических выключателей с электромагнитными, тепловыми, электронными расцепителями самого широкого диапазона с номинальными токами от 63 до 6 300 А, а также измерительных трансформаторов тока. Комплекс позволяет выдавать полноценный синусоидальный ток, начинающийся с нуля, что важно для проверки выключателей, работающих по действующему значению тока. В него встроен дополнительный источник питания, необходимый для запитывания схемы электронного расцепителя, а также имеется специальный режим «Предпитание» для предварительной подачи на расцепитель тока, близкого к номинальному.

Сегодня РЕТОМ-30кА является единственным в России комплексом, позволяющим выдавать синусоидальный ток до 30 000 А при большой величине выходной мощности, составляющей 55 000 ВА (а совместно с дополнительным блоком РЕТ-6кА – и постоянный ток до 6 000 А), при этом оставаясь достаточно мобильным и имеющим сравнительно небольшие габариты.

 
Александров Н.М. и Медяков Е.А.
НПП «Динамика»
г. Чебоксары
июнь 2014
  • Поделитесь:
  •  
  •  
вверх

Вход в личный кабинет

Восстановление доступа

Заказать звонок

Новое сообщение

ООО «НПП «Динамика» использует файлы cookie. Продолжая пользоваться настоящим сайтом вы соглашаетесь на обработку ваших персональных данных в соответствии с Политикой конфиденциальности . Вы можете запретить сохранение cookie в настройках вашего браузера.